Artificial Solid Electrolyte Interphase-Protected LixSi Nanoparticles: An Efficient and Stable Prelithiation Reagent for Lithium-Ion Batteries.
نویسندگان
چکیده
Prelithiation is an important strategy to compensate for lithium loss in lithium-ion batteries, particularly during the formation of the solid electrolyte interphase (SEI) from reduced electrolytes in the first charging cycle. We recently demonstrated that LixSi nanoparticles (NPs) synthesized by thermal alloying can serve as a high-capacity prelithiation reagent, although their chemical stability in the battery processing environment remained to be improved. Here we successfully developed a surface modification method to enhance the stability of LixSi NPs by exploiting the reduction of 1-fluorodecane on the LixSi surface to form a continuous and dense coating through a reaction process similar to SEI formation. The coating, consisting of LiF and lithium alkyl carbonate with long hydrophobic carbon chains, serves as an effective passivation layer in the ambient environment. Remarkably, artificial-SEI-protected LixSi NPs show a high prelithiation capacity of 2100 mA h g(-1) with negligible capacity decay in dry air after 5 days and maintain a high capacity of 1600 mA h g(-1) in humid air (∼10% relative humidity). Silicon, tin, and graphite were successfully prelithiated with these NPs to eliminate the irreversible first-cycle capacity loss. The use of prelithiation reagents offers a new approach to realize next-generation high-energy-density lithium-ion batteries.
منابع مشابه
Dry-air-stable lithium silicide-lithium oxide core-shell nanoparticles as high-capacity prelithiation reagents.
Rapid progress has been made in realizing battery electrode materials with high capacity and long-term cyclability in the past decade. However, low first-cycle Coulombic efficiency as a result of the formation of a solid electrolyte interphase and Li trapping at the anodes, remains unresolved. Here we report LixSi-Li2O core-shell nanoparticles as an excellent prelithiation reagent with high spe...
متن کاملMetallurgically lithiated SiOx anode with high capacity and ambient air compatibility.
A common issue plaguing battery anodes is the large consumption of lithium in the initial cycle as a result of the formation of a solid electrolyte interphase followed by gradual loss in subsequent cycles. It presents a need for prelithiation to compensate for the loss. However, anode prelithiation faces the challenge of high chemical reactivity because of the low anode potential. Previous effo...
متن کاملA pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes.
Silicon is an attractive material for anodes in energy storage devices, because it has ten times the theoretical capacity of its state-of-the-art carbonaceous counterpart. Silicon anodes can be used both in traditional lithium-ion batteries and in more recent Li-O2 and Li-S batteries as a replacement for the dendrite-forming lithium metal anodes. The main challenges associated with silicon anod...
متن کاملGrowth of copper oxide nanocrystals in metallic nanotubes for high performance battery anodes.
A rational integration of 1D metallic nanotubes and oxide nanoparticles has been demonstrated as a viable strategy for the production of both highly stable and efficient anodes for lithium ion batteries. We encapsulated copper oxide (CuO) nanoparticles in ultra-long metallic copper nanotubes with engineered interspaces, and explored their electrochemical properties. Such a hierarchical architec...
متن کاملSilicon Thin Films as Anodes for High-Performance Lithium-Ion Batteries with Effective Stress Relaxation
There is a great deal of interest in developing next-generation lithium ion (Li-ion) batteries with higher energy capacity and longer cycle life for a diverse range of applications such as portable electronic devices, satellites, and next-generation electric vehicles. Silicon (Si) is an attractive anode material that is being closely scrutinized for use in Li-ion batteries because of its highes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 137 26 شماره
صفحات -
تاریخ انتشار 2015